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Abstract

Assessing the quality of fresh produce is essential to ensure a safe and satisfactory product.
Methods to monitor the quality of fresh produce exist; however, they are often expensive,
time-consuming, and sometimes require the destruction of the sample. Electronic Nose (E-
Nose) technology has been established to track the ripeness, spoilage, and quality of fresh
produce. Our study developed a freshness monitoring system for tomatoes, combining
E-Nose technology with storage condition monitoring, color analysis, and weight-loss
tracking. Different post-purchase scenarios were investigated, focusing on the influence of
temperature and mechanical damage on shelf life. Support Vector Classifier (SVC) and k-
Nearest Neighbor (kNN) were applied to classify storage scenarios and storage days, while
Support Vector Regression (SVR) and kNN regression were used for predicting storage
days. By using a data fusion approach with Linear Discriminant Analysis (LDA), the SVC
achieved an accuracy of 72.91% in predicting storage days and an accuracy of 86.73% in
distinguishing between storage scenarios. The kNN yielded the best regression results,
with a Mean Absolute Error (MAE) of 0.841 days and a coefficient of determination of 0.867.
The results highlight the method’s potential to predict storage scenarios and storage days,
providing insight into the product’s remaining shelf life.

Keywords: Electronic Nose; data fusion; freshness monitoring; prediction; machine learning;
artificial intelligence

1. Introduction

The 2021 UNEP Food Waste Index Report states that in 2019, 931 million tonnes of
food waste were generated globally, totaling 17% of the global food production [1]. A large
portion of this waste is generated at the household level, contributing roughly 61% of all
food waste in the product chain [1]. Consumers often rely on “best-before” and “use-by”
dates to determine the shelf life of food. The Regulation (EU) No 1169/2011 defines and
regulates such labeling in the EU. However, this exempts fresh fruits and vegetables from
using “best-before” and “use-by” date labeling [2]. Therefore, identifying suitable storage
conditions and estimating the remaining shelf life introduces a challenge for consumers.

The Oxford English Dictionary defines shelf life as “The length of time that a com-
modity may be stored without becoming unfit for use or consumption” [3]. In the case
of food, this includes the time during which the food is safe for consumption and retains
the expected properties and nutritional values [4]. According to Schmidt et al. [5], fruits
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and vegetables account for the highest food waste in private households. This observation
aligns with the finding that food is primarily discarded due to durability concerns, which
accounts for 57.6% of the reported reasons for disposal [5].

For fruits and vegetables, the expected properties mostly consist of a desirable ap-
pearance, flavor, and texture. The factors influencing fruit and vegetable shelf life differ
from those of other foods because, unlike processed foods, they consist of living tissue
until consumed. The duration for which they retain their desirable properties depends on
the biochemical (e.g., chlorophyll degradation and enzymatic browning), physical (e.g.,
mechanical damage and chilling injury), microbiological (e.g., fungal infection), and en-
vironmental influences (e.g., temperature and humidity) [6]. Therefore, frequent checks
along the product chain are required, mostly during production, storage, and retail. Such
checks often consist of expensive, time-consuming, and/or destructive measurements
(e.g., gas chromatography, texture analyzer, and titration) [6]. Non-destructive tests can
be carried out as an alternative to destructive measurements, and the remaining shelf
life can be predicted. These techniques include, for example, near-infrared spectroscopy,
X-ray scattering, and machine vision [6]. Another promising method to monitor shelf life
involves the detection of volatile compounds using Electronic Nose (E-Nose) technology [7].
The resulting multi-dimensional data can be effectively analyzed using machine learning
algorithms [8]. The aroma of fruits and vegetables is a key quality attribute that changes
over time. Aroma changes measured using E-Nose technology can indicate the ripening
stage and provide insights into their shelf life [9-12]. For instance, off-odors caused by
fungal or bacterial infections can signal spoilage. These infections are often associated with
prior improper handling, which causes mechanical damage to the tissue and compromises
the natural barrier against pathogens [6].

Despite the well-established, non-destructively measured shelf life indicators such as
aroma, color, appearance, storage temperature, and humidity, their practical monitoring
and interpretation remain limited in real-world settings. Especially retail employees and
consumers lack effective tools to accurately assess the condition of food products or deter-
mine their remaining shelf life. Additionally, storage conditions, particularly temperature
and humidity during transportation, can directly impact the remaining shelf life of fruits
and vegetables. However, retailers often lack access to data verifying whether the condi-
tions have been maintained in the previous steps in the supply chain. This highlights the
importance of developing rapid, easy-to-use tools for evaluating the remaining shelf life
of fruits and vegetables. Such tools can enhance decision-making processes at the retail
stage and improve consumers’ trust and safety. Hence, within this work, we (i) developed
a sensor-based, non-destructive E-Nose system to monitor tomato freshness after purchase,
(ii) applied a data fusion approach combining aroma profiles, color, weight, and storage
condition data with machine learning techniques to enhance predictive performance, and
(iii) investigated the effects of temperature and mechanical damage on the remaining shelf
life of tomatoes.

The tomatoes in our study were grouped in different post-purchase storage scenarios
and stored for 14 days. During storage, we measured Volatile Organic Compounds (VOCs)
with an E-Nose system, the color of the fruit over time using RGB images and computer
vision, the percentual weight loss, and the storage conditions (temperature and humidity)
of each scenario. The recorded data was later processed and analyzed using machine
learning algorithms to classify and predict the tomatoes’ storage day and respective storage
scenarios. Using a data fusion approach, we aim to track tomato early spoilage and reveal
differences in different storage scenarios at the household level that can influence shelf
life. Our objective is to evaluate whether our proposed system can accurately predict the
remaining shelf life under typical consumer storage conditions despite their unknown
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pre-purchase history. By focusing on consumer-relevant quality indicators, such as the
absence of visible damage or spoilage, this approach aims to classify tomatoes over a
defined storage period.

The remainder of this work is structured as follows: Section 2 provides a detailed
description of this study’s materials and applied methods. Subsequently, Section 3 presents
the key findings derived from the data analysis. Afterward, in Section 4, these results are
discussed, including limitations and threats to validity. Finally, Section 5 concludes the
findings of the paper.

2. Materials and Methods

This section details the methodologies employed in our study, providing a compre-
hensive overview of our experimental approach, data processing, and machine learning
technologies.

2.1. Sample Selection and Storage Scenarios

Tomatoes (Solanum Iycopersicum) were purchased from a German grocery store to
mimic typical consumer purchasing conditions. The tomatoes were chosen to be of similar
size (7-8 cm diameter), ripeness (red ripe state), and without visible damage to obtain
comparable samples. Only tomatoes with attached panicles were chosen. Before starting
the trial, the panicle was cut, leaving only a small piece attached to each tomato. Since
the samples were freshly purchased and not stored under controlled conditions prior
to the experiment, the day of purchase is subsequently labeled as Ty. Different storage
scenarios were simulated by storing the tomatoes at a cooled temperature of 11 °C (cooled
temperature, Label: T.) in a cooling system (Klarstein Shiraz Duo 29, Chal-Tec GmbH
Berlin, Germany) and at ambient conditions (room temperature 19 °C, Label: Ty). The
influence of mechanical damage on shelf life was tested by dropping some tomatoes from
a height of 80 cm to simulate a drop from a table to create randomized pressure marks.
All damaged tomatoes were stored at ambient conditions (room temperature damaged,
Label: Ty4)-

The storage conditions (temperature and relative humidity) were continuously mon-
itored. Three randomly selected tomatoes from each storage scenario were measured
thrice a week to collect weight loss, color, and E-Nose data. The sampled tomatoes were
discarded after the measurements to ensure independent samples. Additionally, three
tomatoes from each storage scenario were measured throughout the storage period to
observe how shelf life influences the E-Nose signals. While storage conditions refer to the
measured environmental parameters such as temperature and humidity, storage scenarios
represent the predefined experimental groups used as labels for the tomatoes, combining
specific condition settings and factors like mechanical damage. In the following sections,
the procedure for each measurement will be explained in detail.

2.2. Storage Condition Monitoring

Understanding the impact of storage conditions on shelf life is crucial and requires
constant monitoring of the environment. Therefore, a temperature and humidity sensor
(ASAIR DHT 22/ AM2302, Guangzhou, China) was placed in the cooling system and next
to the tomatoes stored at room temperature. The data was collected over a storage period
of 14 days using an Arduino microcontroller (Arduino Uno Rev 3, Monza, Italy). Due to
strong fluctuations in the sensor signal, the raw data was filtered to remove outliers. Values
exceeding 1.5 times the interquartile range (IQR) below the first quartile or above the third
quartile were identified as outliers and removed from the dataset. For each measurement
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day, daily averages were calculated for all monitored storage variables, incorporating the
24-h sensor recordings, and were assigned to the samples measured that day.

2.3. Weight Loss

Weight loss due to water loss through transpiration can cause fruits to lose key quality
attributes consumers value, such as firmness and freshness, which may lead to their
disposal. Factors like cuticle structure, gas permeability, and surrounding temperature
determine the rate of water loss [13]. The amount of weight loss was estimated by weighing
the tomatoes on the day of purchase (1;,,ii;;) and the respective measurement day (current)
using a PCB 350-3 laboratory scale (Kern & Sohn GmbH, Balingen, Germany). The extent of
water lost from the fruit by transpiration is assumed to be far larger than losses from, e.g.,
lost volatiles. Therefore, we treated the measured weight loss entirely due to water loss.
Weight loss was calculated as a percentage of the original weight to account for different
fruit sizes and weights (see Equation (1)).

Weight loss = Meurrent . 10 (1)

initial
2.4. Color Analysis

Color is an important metric for the determination of fruit ripeness and freshness. For
the color analysis, the tomatoes were photographed from three sides (bottom, left, right)
using a digital camera (Sony 7 E-Mount, Tokyo, Japan) inside an enclosed photo box. The
tomatoes in the pictures were recognized using Autodistill’s Grounded Segment Anything
Model (SAM) (IDEA-Research, Shenzen, China) with the prompt “Tomato”. The segmented
images were converted to the CIELAB color space. The average L*, a* and b* color values
were calculated for each picture. The final color value of each tomato was calculated as the
average of the color values detected in the three pictures. ChatGPT 40 was employed to
assist interpreting trends within the color data.

2.5. E-Nose

This subsection provides a detailed overview of the E-Nose system used in this study,
including a description of the system and the measurement procedure.

2.5.1. The E-Nose System

The E-Nose sensor array comprises 12 commercially available metal oxide semicon-
ductor (MOS) sensors. Table 1 shows the sensor types, distributors, and target gases. The
sensors were connected to an Arduino microcontroller (Arduino Mega 2560 Rev 3, 154
Monza, Italy), which was used for data collection.

The collected data was retrieved using an SD-Card module. The system setup is
depicted in Figure la. An external power unit (Komerci QJ3005EIII, Ebern, Germany)
was implemented to supply the sensors” heating elements. The E-Nose system includes
three chambers connected by tubes. Polytetrafluoroethylene (PTFE) tubes and a metal
chamber were employed to avoid odor attachment. Further, the system was built airtight
to avoid sample leakage or contamination. Airflow was produced using a pump (N 811
KN.18, KNF, Freiburg i.B., Germany) with a fixed flow rate of 11.5 L/min. Two three-way
valves and one two-way valve were utilized to direct the airflow during the measurement
phases. Inside the E-Nose (Figure 1b), the 12 gas sensors were placed in two rows with
even spacing. Eleven of the twelve sensors contained a resistor of 10 k(). In Figure 1b,
the sensor with a 1 k() resistor is indicated. The airflow inside the E-Nose was directed in
an S-shape using aluminum deflector plates to ensure the sample air passed each sensor.
The sample chamber and the temperature and humidity sensor chamber were made of 2 L
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stainless steel boxes. Temperature and humidity inside the E-Nose were monitored using
an independent Arduino (Arduino Nano, Monza, Italy) connected to a DHT22 temperature
humidity sensor (ASAIR DHT 22/ AM2302, Guangzhou, China).

Table 1. Sensor types and target gases of the MOS sensors used in the E-Nose system.

Sensor Type Target Gas
MQ2 * Methane, Butane, LPG, Smoke
MQ3 * Ethanol, Smoke
MQ4 * Methane, CNG
MQ5 * Natural Gas, LPG
MQ6 * LPG, Butane
MQS8 * Hydrogen
MQ9 * Carbon Monoxide, flammable Gasses
MQ135 * Ammonia, Nitrous Oxides, Benzene, CO,
MQ136 ** Hydrogen Sulfide
MQ137 ** Ammonia
MQ138 ** Toluene, Alcohol, Acetone, Hydrogen

* Hanwei Electronics Co., Ltd., Zhengzhou, China, ** Winsen Electronics Technology Co., Ltd, Zhengzhou, China.

Pum 3
R— P Sample Chamber

(a) E-Nose measurement loop without the chamber for the temperature and
humidity sensor.

(b) Sensor array inside of the E-Nose system. Sensor with 1 k() resistor is indi-
cated.

Figure 1. The E-Nose system.
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Due to the complex mixture of VOCs in the tomato odor profile and the non-specificity
of the gas sensors, no exact concentrations of individual substances were measured. Instead,
the change in sensor resistance was used as a quantitative measure of the gas concentration
present in the sample. During measurements, the sensor resistance of all sensors was
recorded with a frequency of 1 Hz.

2.5.2. Measurement Procedure

The E-Nose measurement procedure was divided into three phases. In the first phase,
the sample was enriched for 15 minutes to accumulate a sufficient concentration of VOCs
for the measurement. During this phase, the baseline resistance of the E-Nose in fresh air
was recorded. The second phase involved pumping the sample gas through the sensor
circuit for 5 minutes until the sensor readings stabilized at a constant level. In the final
phase, the sensors were regenerated with fresh air for 5 minutes to ensure complete recovery
of the sensors.

2.6. Machine Learning Pipeline

The following subsection outlines the machine learning pipeline, including the E-
Nose data processing, feature pre-processing steps and the algorithms used for model
development. ChatGPT 40 and 3.5 were employed to support the coding process. The data
used in this pipeline is available at https://doi.org/10.5281/zenodo.15469472 (accessed on
9 July 2025).

2.6.1. E-Nose Data Processing

The E-Nose measurements were analyzed using Python 3.11. For each sensor, the ratio
of resistance, as surrogates for the gas concentration, in the sample air to fresh air (Rs/Ry)
was derived from the E-Nose recordings. This normalization minimized the influence of
ambient conditions on the measurement results.

As the target gas was introduced manually, its point of addition had to be identified in
the data individually. Therefore, breakpoint detection was employed. After introducing
the target gas, the sensor resistance sharply declined, followed by stabilization at a lower
level (see Figure 2a).

The exact time of this change was determined by analyzing the rolling standard
deviation of the sensor signal (see Figure 2b). The breakpoints were identified by computing
the rolling standard deviation of the data with a right-aligned window size of 10 s. The red
line (Figure 2b) marks the maximum rolling standard deviation and represents the right
boundary of the sensor’s adaptation phase. It indicates the point at which the sensor array
has adjusted to the presence of the sample gas. The left boundary (pink line) corresponds
to the initial rise in signal variability, occurring approximately 15 s earlier, and marks the
beginning of the sample gas introduction. Therefore, all sensor readings up until 15 s (pink
line) were included in the calculation of Ry. Rs was calculated by averaging the sensor
readings between 40 and 60 s (blue lines) after the breakpoint, allowing slow and gradual
signal changes to be captured. Due to strongly fluctuating sensor signals, all breakpoints
were compared with the corresponding breakpoint of the MQ3 sensor, which reliably
detected the gas addition. Any deviation exceeding 10 s was considered a false detection,
and the breakpoint was replaced with the MQ3 reference breakpoint.
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Figure 2. Exemplary E-Nose recordings (light blue line) from the MQ3 (Ethanol) sensor. Red line
marks the detected breakpoint, the pink lines border the interval during sample gas adjustment, and
the blue lines indicate the interval used to calculate the Rg value.

The ratio was adjusted based on each tomato’s weight on the day of measurement
(Mcurrent)- Weight normalization was applied to account for varying weight of the individual
tomatoes, to reduce bias from size-related signal strength, given that all samples were
measured using the same procedure. The weight-normalized Sensor Ratio Response
(SRRy) was calculated as shown in Equation (2).

(Rs)

Mcurrent

SRRy = )

2.6.2. Feature Pre-Processing

Samples measured on the day of purchase (Ty) were excluded from dataset, as they
represent the same tomatoes across all storage scenarios. For the analysis, all observations
with missing values were removed. Furthermore, one measurement with no recorded
data was manually removed. In total 52 tomato samples were included in the further
processing steps. Dimensionality reduction and visualization of data separability were
performed using two established techniques: Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA). Both techniques were applied to three distinct datasets:
the first included only SRR, values (12 features and 52 observations), the second comprised
storage monitoring parameters, weight data, and color analysis (SWC; 6 features and
52 observations), and the third combined the features from both datasets (Combined;
18 features and 52 observations). All three datasets additionally included the storage
scenario and the storage day. Either storage scenario or storage day was used as the target
variable, while the other one was not considered in the model.

Depending on the data distribution, the separability of the samples based on the first
two PC/LD scores was examined using either ANOVA followed by a Tukey post-hoc test
or a Kruskal-Wallis test followed by Dunn’s test. The results of the statistical tests are
available on Zenodo https://doi.org/10.5281/zenodo.15469472 (accessed on 9 July 2025).
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However, PCA failed to provide clear data separation for all three datasets. Therefore,
it was excluded from this study as a pre-processing method. Five-fold cross-validation
splitting the datasets (SRRy, SWC, and Combined) into training and test sets (80:20) was
applied to evaluate the performance of the models. All features were normalized to a mean
of y = 0 and standard deviation ¢ = 1 to ensure that all variables lie within the same
range and are not weighted differently due to different scales. For the classification tasks,
normalization, dimensionality reduction, and model training were performed within the
five-fold cross-validation pipeline. StratifiedKFold cross-validation was used to ensure that
class distributions were preserved across folds. For the regression tasks, dimensionality
reduction was applied to the respective datasets prior to splitting them into training and test
sets for model training. Afterward, the normalization and model training were performed
within the five-fold cross-validation pipeline. If no dimensionality reduction was applied,
only normalization and model training within the cross-validation were performed.

2.6.3. Machine Learning Models

A Support Vector Classifier (SVC) and a k-Nearest Neighbor (kNN) classification
algorithm were implemented to classify the storage day and the storage scenario. Accuracy,
precision, recall, and F1 score were selected as performance metrics for the classification
models. A Support Vector Regression (SVR) with a linear kernel and a kNN regressor
algorithm were applied to predict the storage day. Mean Average Error (MAE), Mean
Square Error (MSE), and the coefficient of determination (R?) were selected as performance
metrics. For the model training and evaluation, a five-fold cross-validation approach was
selected as described in Section 2.6.2. Performance measures were calculated as the average
over the five folds. The machine learning algorithms were applied using their default
parameter settings.

3. Results

This section presents the study’s results. First, the outcomes of the storage monitoring,
weight loss tracking, and color analysis are reported, followed by the findings from the
E-Nose measurements. Subsequently, the components of the machine learning pipeline are
outlined, and the performance of the applied machine learning algorithms are evaluated.
Only results that will be discussed in Section 4 are displayed.

3.1. Storage Condition Monitoring

Section 2.1 describes the three storage scenarios. For each setting, the temperature and
relative humidity were tracked. For Ty and Ty, the temperature averaged 18.84 + 1.10 °C
and 18.70 £ 0.80 °C. The corresponding relative humidity values were 41.25 £ 4.53% for
Tyt and 42.73 £ 4.23% for Tyq. In the T, scenario, the temperature showed a mean value of
11.18 £ 1.64 °C with a relative humidity of 49.49 + 9.61%.

3.2. Weight Loss

Figure 3 presents the daily average measurement from the three randomly selected
tomatoes per storage scenario. The remaining weight, expressed as a percentage, illustrates
the weight loss over time. While all tomatoes lost weight, the extent varied across the
storage scenarios. After 14 days, tomatoes stored in the T, scenario experienced less weight
loss than tomatoes stored in the other storage scenarios. Damaged tomatoes (Tq) exhibited
greater weight loss than undamaged tomatoes (Ty).
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Figure 3. Weight loss as a percentage of remaining weight of the tomatoes over time for the three
storage scenarios. Tc: cooled temperature; Tyi: room temperature; Tiq: room temperature damaged.

3.3. Color Analysis

Color values in the CIELAB color space were obtained from daily photographs by
segmenting the tomato pixels using the Grounded SAM model with the prompt “Tomato”,
followed by color space conversion and averaging of the masked pixel values. Tomato
detection was successful; however, the segmentation sometimes captured unintended
elements, such as the metal ring used to position the tomatoes or the panicles attached to
the sample. Including non-red tomato parts and other objects in the image mask could
lead to errors in detecting the correct color value. The tomato’s color development over the
14-day storage period was quantified using the CIELAB color space parameters L*, a*, and
b*. An overview of the average color values of the three randomly selected tomatoes per
measurement day and scenario is provided in Table 2. For each tomato, three pictures were
used as described in Section 2.4, to calculate the respective value. Measurements taken on
the day of purchase (Tj) were used as a reference for comparison.

L* values showed minor fluctuations over time across all storage scenarios. Relatively
stable L* values were observed for T, with final values of 40.45 + 2.15. Ty displayed a
temporary decrease between days 5 and 10, with recovery by the end of the storage period.
In comparison, a decrease was observed in the T,y scenario until day 7 (36.07 + 0.37),
followed by an increase to 37.92 + 2.18 by the end of storage. In the T scenario, a* only
slightly increased from the initial value to day 14 (45.86 + 0.62). The a* value for Ty peaked
at the end of the storage period at 46.05 + 3.25 (day 14). T,q depicted a decline until day
10 (40.75 + 0.93), with a slight increase afterward. b* values in the T scenario depicted a
drop on day 5 (32.53 + 1.13), increasing to a similar value at the storage end in comparison
to the starting point. In the Ty scenarios a decrease compared to the starting point was
indicated for day 5, 7, 10, and 12 with an increase at the last storage day (35.98 + 3.18). The
most pronounced decrease was observed under Tyg, with b* dropping from 34.52 + 2.43 on
day 3 to 30.36 + 1.20 on day 10, followed by a slight increase at the end.
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Table 2. Calculated mean CIELAB values and standard deviation of the tomatoes over the 14 days
storage period. Ty: day of purchase; Tc: cooled temperature; Ty: room temperature; Tyq: room
temperature damaged.

Storage Day Storage Scenarios L* a* b*
0 To 38.81 £1.58 4536+0.60 3590=+0.85
3 Tc 4048 £1.78 43.11+2.58 36.10+1.71
5 Tc 3623 £123 4243 +098 3253+1.13
7 Tc 39.68+£2.00 4622+091 37.18=+1.32
10 Tc 38.49+£0.74 4584 +129 3551+152
12 Tc 3994119 44.85+1.07 35.88+0.82
14 Tc 4045 +2.15 4586 +0.62 36.35=+0.45
3 Trt 3998 +£1.11 4511+090 36.08+1.43
5 Trt 3698090 4193+135 3245+1.32
7 Trt 36.66 £0.61 44.25+0.78 33.22+025
10 Trt 36.03+044 43.75+0.70 32.38=+041
12 Tre 3717 +nan 43.37 £+nan 32.65 + nan
14 Trt 3899 £257 46.05+325 3595+3.18
3 Trd 3833130 4551179 3452+243
5 Tid 3622 +126 43.04+288 3197+294
7 Trd 36.07+031 4153+1.89 30.31+225
10 Tid 3711 +£0.80 40.75+093 30.36=+1.20
12 Tid 37.82+141 43.89+201 33.59+1.30
14 Trd 3792 £218 4479+262 32.85x245
3.4. E-Nose

The temperature inside the E-Nose system ranged from 21 °C to 23 °C, while the
relative humidity fluctuated between 30 and 60%. From the raw data, the breakpoints and
SRRy, values were calculated. Figure 4 displays the SRRy, mean values of 4 sensors (MQ135,
MQ136, MQ137, and MQ23) for the continuously monitored tomatoes in the different storage
scenarios. The T, scenario deviates from the other two storage scenarios for the displayed
sensors. Notably, Ty shows a decrease in SRRy, values after day 10 for the sensors MQ136
and MQ137, and a drop from day 6 for MQ3. Visual inspection revealed that one of the
continuously monitored tomatoes stored under the Ty scenario exhibited signs of microbial
spoilage toward the end of the trial. For SRRy, values of the randomly sampled tomatoes,
the variance within each storage scenario was too high to allow a clear visual grouping.
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Figure 4. SRRy, mean values including standard deviations of the continuously measured tomatoes
over time for the different storage scenarios. Sensors: MQ135 (upper left); MQ136 (upper right);
MQ137 (lower left); MQ3 (lower right). T.: cooled temperature; Tyi: room temperature; Tyq: room
temperature damaged.

3.5. Machine Learning Pipeline

This section presents the results related to the machine learning pipeline, including the
dimensionality reduction and the performance of the classification and regression models.

3.5.1. Dimensionality Reduction

We applied the supervised LDA method for dimensionality reduction. It searches for
the hyperplane that maximizes separability between classes while minimizing the variance
within the classes of the target variable. Class separation was evaluated by comparing the
mean values of LD1 and LD2 using either ANOVA followed by a Tukey post-hoc test or
Kruskal-Wallis tests followed by Dunn’s test, depending on the data distribution and the
homogenity of variances of the features.

As mentioned in Section 2.1, samples measured on the day of purchase (Ty) were
excluded from the LDA analysis to avoid introducing identical data into multiple classes.
The LDAs shown in Figures 5-7 were conducted on the full datasets of the three cases,
SRRy, SWC, and Combined, to enable visual comparison.

For all three datasets (SRR, SWC, and Combined), a total of 2 LDs were calculated
for the storage scenario and 5 LDs for the storage days. The 2 LDs for the storage scenario
contained 100% of the variance between the classes. For the storage days, the first 2 LDs
contained over 80% of the variance. Figure 5 shows plots of the first two LDs calculated
using the SRRy, values. The class separation results show that LD1 could distinguish the
storage scenarios Tyt from Tyq and T, while LD2 could separate Ty4 from T.. Significant
differences between storage days were observed for all comparisons except between storage
days 5 and 12 and storage days 7 and 10. To further explore trends within the data, LDA
plots were color-coded by storage day and symbol-coded by storage scenario, allowing
a visual assessment of patterns. This approach revealed that, for the SRRy, dataset, no
consistent grouping was possible.
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Figure 5. The first and second linear discriminants calculated from the SRRy, values plotted against
each other. The (left plot) uses the storage scenario as the target variable, while the (right plot) is
based on storage day. Data points are color-coded by storage day, and different symbols indicate the
respective storage scenarios to illustrate their distribution across the discriminant space. T: cooled
temperature; Tri: room temperature; Tyq: room temperature damaged.

In Figure 6, the LDA performed on the SWC dataset is displayed. The evaluation of the
class separation revealed that LD1 could distinguish the storage scenarios T from T and
Tytq, while LD2 could separate all three scenarios. Storage days also differed significantly,
except between storage days 7 and 10 as well as 12 and 14. Using the SWC dataset, a visual
grouping of the storage days within each storage scenario (Figure 6 (left)) becomes more
evident. While some overlap remains during the initial days, clearer separation between
the days can be observed toward the end of the storage period across all three scenarios.
In contrast, when using storage day as the target variable (Figure 6 (right)), the LDA only
partially reveals separable groupings of the storage scenarios within each day.
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Figure 6. The first and second linear discriminants calculated from the SWC dataset plotted against
each other. The (left plot) uses the storage scenario as the target variable, while the (right plot) is
based on storage day. Data points are color-coded by storage day, and different symbols indicate the
respective storage scenarios to illustrate their distribution across the discriminant space. T: cooled
temperature; Tri: room temperature; Tyq: room temperature damaged.

The third LDA was performed with the combined dataset (Figure 7). The analysis
of the class separation confirmed the same group separations among storage scenarios
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as observed in the LDA performed with the SWC dataset. Furthermore, all storage days
showed significant differences in LD1 or LD2 scores. The combined dataset demonstrated
an enhanced ability to visually distinguish storage days within each storage scenario
compared to the previous datasets. While grouping storage scenarios within individual
days was still only partially successful, the overall class separation appeared more distinct,
indicating better performance of the LDA in this case.
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Figure 7. The first and second linear discriminants calculated from the combined dataset plotted
against each other. The (left plot) uses the storage scenario as the target variable, while the (right
plot) is based on storage day. Data points are color-coded by storage day, and different symbols
indicate the respective storage scenarios to illustrate their distribution across the discriminant space.
T.: cooled temperature; Tyi: room temperature; Tyq: room temperature damaged.

LDA was not applied as a classification model because the required assumptions of
normality and equal covariance matrices, verified through Shapiro-Wilk and Bartlett’s
test, were not consistently met. Instead, LDA was only used for dimensionality reduc-
tion as a pre-processing step within the pipeline, and other models were employed for

the classification.

3.5.2. Classification Models

Four performance metrics—accuracy, precision, recall, and the F1 score—were cal-
culated for each model to determine the quality of the classification. Table 3 shows the
calculated metrics for the SVC and kNN models, with the grey rows indicating the best-
performing models for the storage days and storage scenarios. The results generally reveal
the following trends: Using LDA as a pre-processing step showed the best results across all
target variables.

The best-performing model to classify the storage day used the combined dataset with
LDA as the pre-processing step and SVC as the classification algorithm (accuracy = 0.729,
precision = 0.683, recall = 0.717, F1 score = 0.672). For the storage scenario classification,
the highest accuracy was achieved using the combined dataset with LDA and SVC (ac-
curacy = 0.867, precision = 0.872, recall = 0.872, F1 score = 0.866) or kNN with the same
configuration (accuracy = 0.867, precision = 0.872, recall = 0.872, f1 score = 0.866). Generally,
the models trained with the SRRy, dataset exhibited the lowest performance for both target
variables and classification algorithms for most cases.



Chemosensors 2025, 13, 255

14 of 25

Table 3. Table of performance metrics determined for the SVC and kNN models, averaged over
five-fold cross-validation. A separate model was performed for each combination of pre-processing
steps, input features, and classified variables. Storage day and storage scenario were classified. The
grey rows indicate the best performing models for the storage day and storage scenario classification.

Algorithm Prof;:s-ing Fg:’}; li':es VZ:;agl(;;e Accuracy Precision Recall F1 Score
SVC None SRRy, Day 0.324 +0.117 0.259+£0.108 0.283 +0.113 0.243 +0.101
SVC None SWC Day 0482 +0.172 0.455+0.244 0483+0.178 0.435+0.191
SVC None Combined Day 0.422 +0.069 0.399 £0.150 0.433 +£0.097 0.389 +0.113
SVC LDA SRRy, Day 0.651 +0.106 0.611 +£0.084 0.650 + 0.062 0.597 + 0.075
SVC LDA SWC Day 0.655 +0.151 0.597 £ 0.155 0.650 + 0.133 0.597 + 0.141
SVC LDA Combined Day 0.729 £ 0.113 0.683 £0.078 0.717 £ 0.085 0.672 + 0.082
SVC None SRRy, Scenario  0.289 £ 0.159 0.181 +0.124 0.300 = 0.166 0.220 + 0.141
SVC None SWC Scenario  0.811 +0.077 0.832+0.092 0.811+0.075 0.803 + 0.079
SvC None Combined Scenario 0.598 £ 0.081 0.596 +0.145 0.600 = 0.100  0.568 + 0.090
SVC LDA SRRy, Scenario  0.505+0.132 0.517 +0.196 0.506 = 0.128 0.484 + 0.148
SVC LDA SWC Scenario  0.851 +0.107 0.859 +0.115 0.850 £0.111 0.846 + 0.113
SVC LDA Combined Scenario  0.867 £ 0.094 0.872 +0.097 0.872 +0.097 0.866 + 0.098
kNN None SRRy, Day 0.265 + 0.080 0.247 £0.080 0.250 + 0.075 0.222 + 0.056
kNN None SWC Day 0.465 +0.091 0.415+0.052 0.467 +0.085 0.407 + 0.052
kNN None Combined Day 0.362 +0.114 0.327 £0.168 0.333 £ 0.139 0.306 + 0.150
kNN LDA SRRy, Day 0.673 +0.079 0.628 £0.096 0.667 + 0.053 0.621 + 0.063
kNN LDA SWC Day 0.520 +£0.102 0.444 +0.146  0.500 + 0.091 0.438 + 0.120
kNN LDA Combined Day 0.729 +0.078 0.694 +£0.035 0.717 £0.041 0.669 + 0.042
kNN None SRRy, Scenario  0.251 £ 0.096 0.210+0.138 0.272+0.113 0.201 + 0.091
kNN None SWC Scenario  0.795+0.141 0.788 +0.177 0.789 £0.162 0.778 + 0.165
kNN None Combined Scenario 0.675+0.091 0.717+0.113 0.678 £ 0.099 0.671 + 0.096
kNN LDA SRRy Scenario  0.480+0.102 0.500 +0.126 0.489 +0.102 0.474 + 0.097
kNN LDA SWC Scenario  0.851+0.137 0.844 +0.146 0.844 +0.146 0.844 + 0.146
kNN LDA Combined Scenario  0.867 £ 0.094 0.872 +0.097 0.872 +0.097 0.866 + 0.098

3.5.3. Regression Models

Models were trained exclusively for the number of days in storage. SVR with a linear
kernel and kNN regression were employed as regression models. The same datasets and
pre-processing steps used for the classification models were also applied to the regression
models. The target variable for the LDA was the storage day. Table 4 shows the regressions’
MAE, MSE, and the R? values, with the grey row indicating the best-performing model.

The SRRy models without pre-processing showed negative coefficients of determi-
nation, indicating poor predictive performance. Applying LDA to separate the storage
days before the regression improved the model performance. The models trained on the
combined dataset with LDA as a pre-processing step achieved the best results. For the
kNN model, an MAE of 0.841, an MSE of 1.458, and a coefficient of determination (R?) of
0.867 were achieved. The SVR model also showed a low MAE at 1.087; however, the MSE
was slightly higher at 1.707, and the R? was marginally lower at 0.865.
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Table 4. Table of performance metrics determined for the SVR and kNN regression models to
predict the storage day, averaged over five-fold cross-validation. The grey row indicates the best
performing model.

Algorithm Pre-Processing Input Features MAE MSE R?
SVR None SRRy 3.977 £ 0410 19.204 + 2.534 —0.525 +0.375
SVR None SWC 2.217 £ 0.334 8.161 + 2.060 0.302 + 0.358
SVR None Combined 2.084 + 0.331 7.391 + 2.862 0.374 £ 0.325
SVR LDA SRRy 1.793 + 0.445 5.364 +2.235 0.528 + 0.284
SVR LDA SWC 2.226 + 0.364 8.092 = 2.516 0.284 + 0.402
SVR LDA Combined 1.087 + 0.286 1.707 £ 0.702 0.865 + 0.049
kNN None SRRy 4.011 £ 0.671 20.829 + 5.807 —0.566 £ 0.214
kNN None SWC 2.540 + 0.661 9.161 = 3.868 0.350 + 0.079
kNN None Combined 3.396 + 0.583 15.497 + 3.946 —0.173 £ 0.175
kNN LDA SRRy 1.780 + 0.384 5933 + 1.510 0.500 + 0.209
kNN LDA SWC 2.423 +0.485 9.435 + 3.850 0.290 £ 0.274
kNN LDA Combined 0.841 + 0.201 1.458 + 0.744 0.867 £ 0.110

4. Discussion

This section discusses the study’s key findings, including the E-Nose system and
measurement procedure, the applied storage scenarios, and their impact on shelf life, with
particular attention to the influence of temperature and mechanical damage. Further-
more, the machine learning pipeline is evaluated, focusing on dimensionality reduction,
classification, and regression approaches. Finally, potential threats to validity are discussed.

4.1. E-Nose

The functionality and data quality of the developed E-Nose system were evaluated,
focusing on measurement accuracy. Inert materials such as aluminum and PTFE were used
in the construction to reduce the risk of contamination. However, since the experiments
were conducted in a non-controlled environment without regulated temperature, humidity,
or air quality, external factors can not be excluded, as they may have caused variations
in the measured values. Comparisons of the baseline resistances (Ry) revealed variations
across measurement days and individual samples. Similar patterns have been reported
in literature, where strong differences in the sensor resistance of MOS sensors and shifts
in signal ranges between measurements were observed [14]. One possible cause can be
insufficient sensor regeneration during the measurement, while another potential source of
interference is the condition of the fresh air. Laboratory activities and cleaning agents used
near the E-Nose system can increase the concentration of VOCs in the fresh air. To avoid
contaminated fresh air, Chou et al. [15] used an improvised air filter consisting of activated
carbon in a metal tube to purify the air of organic compounds before gas enrichment.
Furthermore, the temperature and humidity of the fresh air influence the sensor signal [16].
Kislev et al. [14] report that even differences in the weather and the ventilation of the
laboratory room can lead to strong fluctuations in the measurement signal, largely due to
differences in temperature and humidity. In addition, Tang et al. [17] used a water vapor
generator to control the humidity. However, since a higher humidity leads to lower sensor
sensitivity, drying the air is preferred over enriching it with moisture [9]. Since the humidity
values within the E-Nose system varied between 30 to 60% (see Section 3.4) controlling
this parameter could improve the consistency and comparability of the measurements.
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Synthetic air could be an alternative to filtering the fresh air as it offers controlled conditions,
minimizing environmental variability [12].

Therefore, implementing a filter system for the fresh air supply should be considered
in future improvements as it would enhance the system’s reliability in non-controlled
environments, enabling practical use, for example, at the retail stage.

The measurements in this study were conducted within a closed gas circuit. Each
measurement lasted approximately 5 min, allowing sufficient time to achieve a stable
measurement state, even for gases present in high concentrations. The observed decrease
in signal strength may result from a reduction of the target gas concentration caused by
the sensors’ combustion of the target gases during measurement. The more likely cause of
the decrease in signal strength is the sample’s dilution due to the volume of the E-Nose
system. Closed measuring circuits [9,18] and open measuring circuits [15,17] have been
used for E-Nose applications before. Brezmes et al. [18] used a sensor chamber with a
volume of 1 L for their closed setup compared to the sample chamber, which had a volume
of 5 L. Chen et al. [9] also used a sample chamber volume of 5 L compared to a sensor
chamber of 0.015 L. In comparison, the sample chamber in this study had a volume of 2 L,
and the sensor chamber had a volume of 0.594 L. Additionally, the chamber containing
the temperature and humidity sensor contributed another 2 L. This relatively large overall
system volume, combined with a higher proportion of clean air to sample air, may have led
to dilution effects, reducing the VOC signal strength even in closed measuring circuits. For
the open-circuit E-Nose systems, sample and measurement chambers of similar volumes
are often used, as no mixing of the samples is expected because the sample is discarded
after measurement [15,17]. The pump’s flow rate (11.5 L/min) was higher than the values
for E-Nose systems reported in the literature. Usual pumping rates in E-Nose systems
are between 0.8 L/min [15] and 2 L/min [17,18]. The comparatively high flow rate in the
closed system may entail challenges due to the dilution of the sample air, which reduces the
concentration of VOCs over time. Additionally, a high flow rate reduces the residence time
of highly concentrated VOCs within the E-Nose, and when combined with the dilution
effect, this results in an overall weakening of the signal strength. Future improvements to
the E-Nose system should include a larger sample chamber and a pump with a lower flow
rate to reduce dilution effects.

At the beginning of the measurement, the sensor’s baseline remains stable. Follow-
ing the addition of the target gas, a rapid decrease in sensor resistance is observed (see
Figure 2a). Once an equilibrium between oxygen binding and consumption at the sensor
surface is reached, the resistance stabilizes. The observed pattern aligns with resistance
and conductivity behaviors reported in the literature [9,10,12,15,18]. The magnitude of the
decrease and the rate of change differed depending on the sensor, which was expected due
to the different target gases and individual sensor differences. Continuous fluctuations
observed in several sensor signals may be attributed to the low resolution of the analog-
to-digital converter integrated into the Arduino. The Arduino Mega 2560 Rev3 is based
on the ATmega 2560/V microprocessor, which is equipped with a 10-bit analog-to-digital
converter [19]. The Arduino can measure voltages between 0 and 5 volts, which results in
a minimum resolution of 0.0049 V with 1024 measuring steps (10 bits). When the actual
measured voltage falls between two steps, fluctuations in the signal can occur. In the
literature, analog-to-digital converters with an input range of 13 bits [9] to 24 bits [15] are
used, corresponding to a signal resolution up to 16,384 times more accurate. Improving the
overall signal quality will require integrating an analog-to-digital converter with higher
resolution into the E-Nose system.



Chemosensors 2025, 13, 255

17 of 25

4.2. Influence of Temperature and Mechanical Damage on Shelf Life

Post-harvest losses are often caused by decay, external damage, and harvesting at
improper maturity stages [20]. Additionally, tomatoes are climacteric and chilling-sensitive
fruit, which makes them easily affected by storage conditions. Ripe tomatoes can be
stored at around 10 °C without experiencing chilling injuries [20]. To simulate different
storage scenarios, parts of the tomatoes were stored at a controlled temperature in a
cooling system. The mean temperature of T, was at 11.18 °C. As expected, the temperature
differences between the Ty and Tyiq scenarios were minimal with mean values of 18.84 °C
and 18.70 °C, respectively.

4.2.1. Weight Loss

The data collected for the weight loss confirms the difference between the samples.
Tomatoes stored at cooler temperatures show less weight loss than the tomatoes stored at
room temperature (see: Figure 3). PoZrl et al. [21] and Sualeh et al. [22] obtained similar
results regarding the effect of temperature and weight loss. Javanmardi and Kubota [23]
and Pozrl et al. [21] attribute the weight loss to increased transpiration. Compared to
refrigerated samples, tomatoes stored at ambient temperatures showed a greater weight
loss over the storage period. Therefore, lower temperatures can help to prevent weight loss
of fresh fruit [22]. However, storing fresh fruit at too low temperatures can cause chilling
injury, which damages the tissues and leads to softening and rot [24,25].

In addition to temperature effects, physical damage also plays a critical role. Mechani-
cally damaged tomatoes (T,q) exhibited even greater weight loss over the storage period.
This trend can be explained by mechanical damage compromising the tomato’s natural
protective barrier, leading to increased surface permeability and accelerated transpiration.

4.2.2. Color

Consumers often use tomato color as a quality indicator. Table 2 shows differences
in the color development in the storage scenarios. These results suggest that tomatoes
stored at lower temperatures (T.) depict only minor differences in color change due to
slowed-down ripening processes. In contrast, tomatoes stored in the Tyt scenario exhibited
more pronounced and variable color changes, indicating a less controlled ripening process.
The Tyiq samples followed a similar trend to Ty, showing accelerated color degradation
due to the combined effects of temperature and damage. The changes observed in the Tyt
and T4 scenarios are consistent with findings from Sualeh et al. [22], who reported that
tomatoes stored at ambient temperatures depicted faster visual changes than refrigerated
samples. Additionally, Javanmardi and Kubota [23] demonstrated that elevated tempera-
tures significantly influence lycopene development, further explaining the accelerated red
color formation and variability in Ty and T,q samples. However, the results obtained in
this study exhibit a non-linear pattern, which may be attributed to the random sampling
approach. Moreover, the color extraction method demonstrated limitations, as unintended
elements, such as parts of the panicle and the metal positioning ring, were captured in the
image mask (see Section 3.3). While individual CIELAB components provide insight into
color changes, Pozrl et al. [21] used the total color difference (AE) as a more comprehensive
metric for evaluating color shifts over time. Incorporating AE into future analyses could
offer a more sensitive and consumer-relevant assessment of color degradation during
storage. Furthermore, we aim to explore alternative methods for color measurement, such
as the use of a colorimeter, and compare these results to those obtained from image-based
color recognition using RGB-images to create a more robust and standardized approach for
assessing color as a quality parameter.
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4.2.3. Aroma

Aroma development in tomatoes is closely linked to post-harvest physiological and
biochemical processes, which can be accelerated by mechanical damage [26]. In this study,
E-Nose measurements captured the volatile profile of tomatoes across the storage period.
As shown in Figure 4, the continuously monitored samples stored under T, conditions
exhibited similar sensor response patterns across the different sensors, suggesting a more
stable and gradual development and degradation of aroma-related volatiles. Tomatoes
stored at Tyt and T4 also depicted comparable sensor patterns, indicating similar shelf-life
progress. However, at the end of the storage period, the Tyt samples showed a stronger
deviation in sensor response than the T,;4 samples. The observed differences could indicate
the presence of internal bruising, potentially caused by improper handling at an earlier
stage in the food supply chain. Such damage is often not visible externally but can impact
the aroma profile, leading to a decline in flavor quality [26]. Microbial infections could
also contribute to an aroma profile change by producing spoilage-related volatiles. This is
supported by the fact that one of the continuously monitored T, tomatoes showed signs
of microbial spoilage at the end of the trial. Sinesio et al. [27] investigated the change in
tomato aroma using E-Nose technology. They categorized samples into four classes based
on visible defects and spoilage levels. Their results show that the E-Nose depicted a lower
variance in classifying the samples than a trained sensory panel, highlighting this tool’s
advantage. Hence, their study supports the finding that aroma profile alterations caused
by damage or microbial spoilage can be detected and classified using E-Nose technology.
Defining classes based on visible defects and spoilage levels could enhance new sample
categorization and will therefore be investigated in future studies.

The influence of temperature on aroma development is also well-documented in the lit-
erature. Wang et al. [28] observed that low temperatures inhibited the production of aroma
volatiles and an overall decrease in volatiles with extended storage time employing gas
chromatography-mass spectrometry and E-Nose technology. Using the E-Nose data, they
classified the tomato’s freshness into three categories. Similarly, Maul et al. [29] reported
that tomatoes stored at lower temperatures tended to develop less aroma. They success-
fully classified the tomatoes, using E-Nose data, according to their freshness and storage
temperature. In addition, they used gas chromatography to identify the responsible aroma
components, linking them to the recorded E-Nose profiles. These findings aligned with
the assessment conducted by a trained sensory panel, confirming that E-Nose technology
can reliably detect temperature-related changes in aroma profiles. In general, the reduced
production of volatiles also reflects a slower degradation process, potentially preserving
freshness markers longer than high-temperature storage, which on the contrary can accel-
erate decay. Although our study revealed similar trends, it employed a new approach by
using a weight-normalized sensor signal (SRRy). To validate its applicability, our approach
will be compared to already established methods in future studies. By incorporating a scale
into the sample chamber, we can further streamline the process and thereby automate the
weight measurement.

The combined analysis of color, weight loss, and aroma profiles on shelf life high-
lights that these parameters can help identify different storage scenarios and damaged
samples. Therefore, they reflect key changes during post-purchase storage and indicate
fruit freshness, making them informative features for machine learning models.

4.3. Machine Learning Pipeline

The steps of dimensionality reduction, training, and validation of the machine learning
models are discussed below.
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4.3.1. Dimensionality Reduction

Dimensionality reduction is a widely used technology for transforming high-dimen-
sional data into a lower-dimensional space, improving processing speed for large datasets.
Furthermore, the low-dimensional dataset can be used to visualize data in a more simplified
way [30]. This study applied two classical linear transformation methods to the data:
PCA and LDA. PCA is a frequently used dimensionality reduction method in E-Nose
studies [10,27,28,31,32]. The quality of separation obtained in tomato samples differs
between studies [10,27,28,31,32]. Hong et al. [32] successfully used PCA to separate tomato
juice samples after different storage times. The separation of tomato grades based on
E-Nose data and PCA was also observed [27,28]. Except for Sinesio et al. [27], all of these
studies used the commercial E-Nose systems Airsense Pen2 / Pen3 (Schwerin, Germany).
The Airsense systems use 10 MOS [33,34], which cover a range of target molecules similar
to the E-Nose used in this study. Sinesio et al. [27], who employed an experimental E-Nose,
achieved only partial separation of the samples. In the presented study, the level of random
variation in the data was high, with sources traced to external influences and parts of the
measurement procedure. Hence, PCA did not clearly separate storage days and storage
scenarios, leading to its exclusion as a pre-processing step. Addressing these sources of
variability should limit variation to the true differences within the sample, potentially
making PCA a valid data dimensionality reduction method again. Therefore, future
improvements in the measurement accuracy of the developed E-Nose system are expected
to allow the PCA to be included as a potential pre-processing method in accordance with
the aforementioned studies.

In contrast to PCA, LDA is a supervised data transformation, allowing the captured
variation between classes and reducing the impact of uncertainties [35]. The LDA plots
showed a clear separation of the data (see: Figures 5-7). By including the SWC data, the
separation could be greatly improved. Several studies have demonstrated the effectiveness
of LDA in distinguishing freshness or quality-related stages in perishable food products
using E-Nose data [10,12,17,31]. Sanaeifar et al. [12] applied LDA to monitor banana
ripening by successfully separating different ripening stages and the onset of senescence.
Similarly, Gémez et al. [31] perfectly separated four tomato ripening stages using LDA. In
a subsequent study, they successfully separated storage days of tomato samples stored for
twelve days and measured at three-day intervals [10]. Additionally, their studies concluded
that LDA outperforms PCA in separating ripening stages [31] and measurement days [10].
Tang et al. [17] employed LDA to distinguish between freshness levels in coffee beans.
Notably, they used the LDA results as input features for subsequent machine learning
algorithms [17], similar to the presented study.

4.3.2. Classification Model Performance

The best model to classify storage days and storage scenarios was achieved using the
combined dataset as feature input and applying LDA as a pre-processing step. This pipeline
with SVC as the classifier achieved an accuracy of 72.91% for classifying the storage days
and 86.73% for the storage scenario. Using kNN as classifier yielded a similar result for
the classification of the storage scenario (see Table 3). In the literature, the most common
variable classified based on E-Nose data is the ripeness of the fruit. Depending on the fruit
and technology used, accuracy values between 72% (apple [18]) and 100% (banana [9]) were
achieved. For example, Chen et al. [9] used a hybrid system of color detection and E-Nose.
Using only the E-Nose, they were able to classify ripeness with an accuracy of 86-89%,
depending on the machine learning model used. The algorithms based on only color
recognition achieved 94-99% accuracy. By combining both technologies, most of their tested
machine learning algorithms achieved an accuracy of 100% [9]. Huang et al. [36] developed
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a ripeness classification based on E-Nose and computer vision for tomatoes. The E-Nose
system alone achieved an accuracy of 75%, the computer vision model had an accuracy of
85%, and the combination had an accuracy of 94%. Hong et al. [32] classified the storage
days of freshly squeezed tomato juice. They achieved 86-97% accuracy for the E-Nose-
based models and 96-98% in combination with an E-Tongue. Our best classification models
for the storage days and storage scenarios achieved a performance range comparable to
existing machine learning models applied to other classification tasks. However, the models
based only on SRRy, data showed lower performance than those in other studies.

As previously mentioned, ripeness is one of the most used variable to classify fruits,
which simplifies the classification task but may not reflect the complexity of post-purchase
degradation of fresh produce. For consumers, the period between ripe and unfit for
consumption is especially relevant, as most of the fresh produce is sold in a ripe state.
Therefore, models to classify storage scenarios were trained without considering the specific
storage days, while models to classify storage days were trained without distinguishing
between the underlying storage scenarios. This approach was chosen to reflect realistic post-
purchase conditions where either the storage duration or the prior handling of the product
was unknown. This intentional introduction of additional variability evaluated whether the
model could produce meaningful predictions despite the unknown pre-purchase histories
of the tomatoes. However, this approach made the classification a more challenging task.

The performance achieved by the models in this study represents a good initial
approach. In future studies, separating the storage scenarios during model training or
incorporating storage-specific features could help reduce variability and improve classifica-
tion performance. While some grouping was achieved (see Figure 7), the findings highlight
the need for more consumer-relevant classification categories. Introducing predefined
classes based on purchase conditions (e.g., ripeness, mechanical damage, microbial load)
could improve model generalizability by enabling more accurate sample grouping rather
than assuming uniformity based solely on visible indicators at the time of purchase. These
groupings could be supported by microbial analyses to establish clearer links between
sensor patterns and remaining shelf life. However, defining meaningful classes for products
with unknown histories is challenging, as it requires the definition of reliable parameters to
group them accurately.

In general, the proposed approach’s generalizability should be validated with a new
dataset from comparable perishable fruits and vegetables (e.g., strawberries, blueberries,
and bell peppers). Another approach could be to expand the current dataset with different
tomato varieties, further supporting the model’s adaptability across a broader range of
product characteristics.

4.3.3. Regression Model Performance

In addition to the classification models, regression models for the storage days were
created. As with the classification models, two pre-processing methods and two machine
learning algorithms (kNN regression and SVR) were compared. Predicting the storage day
using the combined dataset and LDA as a pre-processing step showed promising results for
both machine learning algorithms. The SVR model reached an MAE of 1.087 days, which
shows an average deviation of about one day from the true storage day. The MSE of 1.707
and an R? of 0.865 indicate a good fit for the models, with a large portion of the variance
being explained. For the kNN model, a lower MAE of 0.841 days was achieved with an
MSE of 1.458 and R? of 0.867 yielding the best result for the regression task.

For comparison, Hong et al. [37] achieved a coefficient of determination R? of 0.974 for
classifying storage days of freshly pressed tomato juice with a commercial E-Nose (Airsense
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Pen2, Schwerin, Germany) using PCA and partial least squares regression. Their root mean
squared error (RMSE) of 0.830 was lower than the errors observed in this study.

Despite the good overall performance, the results show that predicting the exact
storage day remains challenging. However, considering tomatoes’ relatively long shelf life,
the level of variance observed in the predictions is acceptable. Nevertheless, predictive
accuracy is expected to improve with further system adjustments, such as reducing external
variability by implementing filtered air and enhancing measurement precision.

4.4. Threats to Validity

While this study’s results provide promising insights into the potential of combining
sensor-based measurements and laboratory data with machine learning to assess tomato shelf
life, several limitations that may affect the validity of the findings must be acknowledged.

The study was based on a single 14-day measurement run. Measurement days in-
cluded the data collection of multiple tomatoes per day and storage scenario. Although
this approach provided several data points across the storage period, conducting the ex-
periment only once limits the model’s generalizability. Additionally, the dataset used in
this study was relatively small. Therefore, further trials with larger sample sets must be
conducted to build a more robust and generalizable model.

Although the samples were visually inspected upon purchase, some may have experi-
enced improper handling at earlier stages in the food supply chain. Internal bruising, stress,
or a different state of ripeness, which were not visually detectable, could have introduced
variability. Another potential source of variability could be improperly maintained storage
conditions in earlier stages of the supply chain. In future studies, introducing predefined
classes based on ripeness or pre-purchase conditions (e.g., mechanical damage, micro-
bial load) could improve the model’s generalizability by allowing purchased tomatoes
to be assigned to the appropriate class rather than assuming uniformity on the day of
purchase. Nevertheless, this highlights the challenge of examining pre-purchase conditions
for consumers in real-world scenarios and the need for further research.

Several constraints may have influenced the data quality of the E-Nose system. Unfil-
tered air, potentially containing other VOCs, was used to clean the system. These VOCs
might have affected the sensors’ baseline resistance, leading to measurement deviations.
Additionally, the high pump flow rate may have led to an uneven distribution of the
VOC concentration inside the E-Nose. The sensors were not calibrated due to their broad
sensitivity and low specificity, which can lead to increased measurement variability across
samples. However, the focus of this study was to monitor relative changes within the
product over time rather than quantifying specific compound concentrations. Moreover,
the limited resolution of the analog-to-digital converter may have affected the data quality,
potentially reducing the precision of the recorded sensor signals. An additional challenge
is long-term sensor drift, which can further contribute to measurement variability.

The established system and machine learning pipeline showed strong potential as
a foundation for further research. Future work should refine the measurement system,
increase sample size, and repeat trials under varying conditions to enhance the reliability
and applicability of the proposed approach. Furthermore, alternative strategies for deriving
representative values from the continuous E-Nose signal to identify the most suitable input
for robust model development should be investigated. Additionally, it would be possible to
measure and integrate the influence of packaging, especially of new bio-based materials [38].
Despite these limitations, the study successfully demonstrates the feasibility of using color,
weight loss, and volatile profiles as shelf-life-related parameters for distinguishing storage
days and storage scenarios.
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5. Conclusions

Monitoring the freshness and spoilage of food is essential to ensure consumer safety
and to minimize avoidable food waste. However, traditional methods for assessing fruit
quality are often destructive, time-consuming, and expensive. This study demonstrates
that storage scenarios and storage days can be predicted using a data fusion approach,
including storage data, weight loss tracking, color data, and volatile profiles recorded by
the developed E-Nose system.

Tomatoes purchased from the supermarket exhibited high variability, limiting the
interpretability of the data. While trends of the SRR, data were observed for the con-
tinuously monitored tomatoes, the differences became less pronounced under random
sampling conditions. The randomly sampled SRRy, data was used for the machine learning
models. Including the SWC data improved the separation and modeling of the storage
days and storage scenarios. The best results were obtained when LDA was applied as a
pre-processing step with the combined dataset. The highest classification performance was
achieved using SVC with LDA and the combined dataset, reaching 72.91% accuracy for the
storage day classification and 86.73% for the storage scenario. For the storage scenario, the
kNN classification showed similar performance metrics (accuracy: 86.73%).

Among the regression models, the kNN performed best when trained with the com-
bined dataset with LDA as a pre-processing step, achieving an R? of 86.69%, an MAE of
0.841 days, and an MSE of 1.458. The SVR model produced an MAE of 1.087 with an MSE
of 1.707 and an R? of 86.54% showing a slightly worse performance compared to the kNN.

While the E-Nose system demonstrated its potential for capturing differences in tomato
quality parameters, several limitations currently hinder its generalizability. Sensitivity to
environmental conditions—such as temperature, humidity, and VOC contamination in the
fresh air-as well as procedural factors like high pump flow rates and limited data resolution
affected the consistency of the measurements. Moreover, the generalizability of the results
is further limited by the fact that only a single measurement run was conducted, with
multiple recordings taken over a 14-day storage period.

Future work should focus on refining the system by incorporating filtered and dried
air, optimizing flow rates, and enhancing signal resolution. With these improvements and
including a broader and more diverse dataset, the system’s accuracy and robustness are
expected to improve, enabling more reliable and generalizable conclusions. Since assigning
classes to products with unknown histories remains challenging, future research will
prioritize predictive approaches that estimate remaining shelf life rather than categorical
classification. These can be important steps towards a vision of digital food twins [39,40].
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Abbreviations
The following abbreviations are used in this manuscript:

E-Nose Electronic Nose

IOR Interquartile range

kNN k-nearest Neighbor

LDA Linear Discriminant Analysis
LD Linear Discriminant

Minitir  Weight at day 0

Meyrrent  Weight at measurement day
MAE Mean Average Error

MSE Mean Squared Error

MOS Metal Oxide Semiconductor
PCA Principal Component Analysis

PC Principal Component

PTFE Polytetrafluoroethylene

R? Coefficient of Determination
Ry Baseline resistance

Rg Sensor resistance

RSME  Root Mean Squared Error

SAM Segment Anything Model

SRRy Weighted Sensor Resistance Ratio
SWC Storage Weight Color

svC Support Vector Classifier

SVR Support Vector Regressor

To Day of purchase

T Cooled Temperature

Tyt Room Temperature

Tria Room Temperature Damaged

VOC Volatile Organic Compounds

References

1. Forbes, H.; Quested, T.; O’Connor, C. Food Waste Index Report 2021; UNEP: Nairobi, Kenia, 2021.

2. Regulation (EU) No 1169/2011; Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011.
European Parliament and Council: Strasbourg, France, 2011.

3. Oxford English Dictionary. Shelf Life; Oxford University Press: Oxford, UK, 2023. [CrossRef]

4. Kilcast, D.; Subramaniam, P. (Eds.) The Stability and Shelf Life of Food; Woodhead Publishing in Food Science and Technology:
Cambridge, UK; CRC Press: Boca Raton, FL, USA; Cambridge, UK, 2000.

5. Schmidt, T.; Schneider, F.; Claupein, E. Food Waste in Private Households in Germany—Analysis of Findings of a Representative Survey
Conducted by GfK SE in 2016/2017; Thiinen-Institut: Braunschweig, Germany, 2019. [CrossRef]

6.  Aked,]. Maintaining the postharvest quality of fruits and vegetables. In The Stability and Shelf Life of Food; Kilcast, D., Subramaniam,
P, Eds.; Woodhead Publishing in Food Science and Technology: Cambridge, UK; CRC Press: Boca Raton, FL, USA, 2000;
pp- 249-278.

7.  Rashvand, M.; Ren, Y.; Sun, D.W,; Senge, J.; Krupitzer, C.; Fadiji, T.; Mir6, M.S.; Shenfield, A.; Watson, N.J.; Zhang, H. Artificial
intelligence for prediction of shelf-life of various food products: Recent advances and ongoing challenges. Trends Food Sci. Technol.
2025, 159, 104989. [CrossRef]


http://doi.org/10.1093/OED/4010990732
http://dx.doi.org/10.3220/WP1558690073000
http://dx.doi.org/10.1016/j.tifs.2025.104989

Chemosensors 2025, 13, 255 24 of 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

Krupitzer, C.; Stein, A. Unleashing the Potential of Digitalization in the Agri-Food Chain for Integrated Food Systems. Annu. Rev.
Food Sci. Technol. 2024, 15, 307-328. [CrossRef]

Chen, L.Y.; Wu, C.C.; Chou, T.I; Chiu, SW.; Tang, K.T. Development of a Dual MOS Electronic Nose/Camera System for
Improving Fruit Ripeness Classification. Sensors 2018, 18, 3256. [CrossRef] [PubMed]

Gomez, A.; Wang, J.; Hu, G.; Pereira, A. Monitoring storage shelf life of tomato using electronic nose technique. J. Food Eng. 2008,
85, 625-631. [CrossRef]

Guohua, H,; Yuling, W.; Dandan, Y.; Wenwen, D.; Linshan, Z.; Lvye, W. Study of peach freshness predictive method based on
electronic nose. Food Control 2012, 28, 25-32. [CrossRef]

Sanaeifar, A.; Mohtasebi, S.S.; Ghasemi-Varnamkhasti, M.; Ahmadi, H. Application of MOS based electronic nose for the
prediction of banana quality properties. Meas. J. Int. Meas. Confed. 2016, 82, 105-114. [CrossRef]

Saladie, M.; Matas, A.].; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Xiaolin, R.; Labavitch, ].M.; Shackel, K.A.;
Fernie, A.R; et al. A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiol. 2007,
144,1012-1028. [CrossRef]

Kiselev, I.; Sysoev, V.; Kaikov, I.; Koronczi, I.; Adil Akai Tegin, R.; Smanalieva, J.; Sommer, M.; Ilicali, C.; Hauptmannl, M. On
the Temporal Stability of Analyte Recognition with an E-Nose Based on a Metal Oxide Sensor Array in Practical Applications.
Sensors 2018, 18, 550. [CrossRef]

Chou, T.I; Hsueh, C.F; Yang, K.H.; Chiu, S.W.; Kuo, HW,; Tang, K.T. An Aging Drift Calibration and Device-generality Network
with Realistic Transfer Samples for Electronic Nose. IEEE Sens. |. 2023, 23, 30712-30719. [CrossRef]

Hanwei Electronics. Technical Data MQ-3 Gas Sensor; Hanwei Electronics: Zhengzhou, China. Available online: https://www.
alldatasheet.com/datasheet-pdf/pdf/1304542 /WINSEN /MQ-3.html (accessed on 9 July 2025).

Tang, C.L.; Chou, T.I; Yang, S.R; Lin, Y.J.; Ye, Z.K.; Chiu, S.W,; Lee, SW.; Tang, K.T. Development of a Nondestructive Moldy
Coffee Beans Detection System Based on Electronic Nose. IEEE Sens. Lett. 2023, 7, 1-4. [CrossRef]

Brezmes, J.; Fructuoso, M.; Llobet, E.; Vilanova, X.; Recasens, L; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to
assess fruit ripeness. IEEE Sens. J. 2005, 5, 97-108. [CrossRef]

Atmel Corporation. 8-Bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash: ATmega640/V ATmegal280/V
ATmegal281/V ATmega2560/V ATmega2561/V: Preliminary; Atmel Corporation: San Jose, CA, USA, 2006.

Gross, K.C.; Wang, C.Y,; Saltveit, M. (Eds.) The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; Technical
Report; United States Department of Agriculture: Washington, DC, USA, 2016. [CrossRef]

Pozrl, T.; Znidarcic, D.; Kopjar, M.; Hribar, J.; Sim¢i¢, M. Change of textural properties of tomatoes due to storage and storage
temperature. J. Food Agric. Environ. 2010, 8, 292-296.

Sualeh, A.; Daba, A.; Kiflu, S.; Mohammed, A. Effect of storage conditions and packing materials on shelf life of tomato. Food Sci.
Qual. Manag. 2016, 56, 60-67.

Javanmardi, J.; Kubota, C. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during
postharvest storage. Postharvest Biol. Technol. 2006, 41, 151-155. [CrossRef]

Page, D.; Gouble, B.; Valot, B.; Bouchet, ].; Callot, C.; Kretzschmar, A.; Causse, M.; Renard, C.; Faurobert, M. Protective proteins
are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 2010, 232, 483-500.
[CrossRef]

Pinheiro, J.; Alegria, C.; Abreu, M.; Gongalves, E.M.; Silva, C.L. Kinetics of changes in the physical quality parameters of fresh
tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. J. Food Eng. 2013, 114, 338-345. [CrossRef]

Moretti, C.L.; Baldwin, E.A.; Sargent, S.A.; Huber, D.J. Internal bruising alters aroma volatile profiles in tomato fruit tissues.
HortScience 2002, 37, 378-382. [CrossRef]

Sinesio, F.; Natale, C.; Quaglia, G.; Bucarelli, F.; Moneta, E.; Macagnano, A.; Paolesse, R.; D’Amico, A. Use of electronic nose and
trained sensory panel in the evaluation of tomato quality. J. Sci. Food Agric. 2000, 80, 63-71. [CrossRef]

Wang, D.; Wang, Y.; Lv, Z.; Pan, Z.; Wei, Y.; Shu, C.; Zeng, Q.; Chen, Y.; Zhang, W. Analysis of Nutrients and Volatile Compounds
in Cherry Tomatoes Stored at Different Temperatures. Foods 2022, 12, 6. [CrossRef]

Maul, E; Sargent, S.; Sims, C.; Baldwin, E.; Balaban, M.; Huber, D. Tomato flavor and aroma quality as affected by storage
temperature. J. Food Sci. 2000, 65, 1228-1237. [CrossRef]

van der Maaten, L.; Postma, E.; Herik, H. Dimensionality Reduction: A Comparative Review. J. Mach. Learn. Res. 2007, 10, 13.

Goémez, A.; Hu, G.; Wang, ].; Pereira, A. Evaluation of tomato maturity by electronic nose. Comput. Electron. Agric. 2006, 54, 44-52.
[CrossRef]

Hong, X.; Wang, J. Use of Electronic Nose and Tongue to Track Freshness of Cherry Tomatoes Squeezed for Juice Consumption:
Comparison of Different Sensor Fusion Approaches. Food Bioprocess Technol. 2015, 8, 158-170. [CrossRef]

Du, D.; Wang, ].; Wang, B.; Zhu, L.; Hong, X. Ripeness Prediction of Postharvest Kiwifruit Using a MOS E-Nose Combined with
Chemometrics. Sensors 2019, 19, 419. [CrossRef] [PubMed]


http://dx.doi.org/10.1146/annurev-food-012422-024649
http://dx.doi.org/10.3390/s18103256
http://www.ncbi.nlm.nih.gov/pubmed/30262785
http://dx.doi.org/10.1016/j.jfoodeng.2007.06.039
http://dx.doi.org/10.1016/j.foodcont.2012.04.025
http://dx.doi.org/10.1016/j.measurement.2015.12.041
http://dx.doi.org/10.1104/pp.107.097477
http://dx.doi.org/10.3390/s18020550
http://dx.doi.org/10.1109/JSEN.2023.3328627
https://www.alldatasheet.com/datasheet-pdf/pdf/1304542/WINSEN/MQ-3.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1304542/WINSEN/MQ-3.html
http://dx.doi.org/10.1109/LSENS.2023.3241943
http://dx.doi.org/10.1109/JSEN.2004.837495
http://dx.doi.org/10.22004/ag.econ.348552
http://dx.doi.org/10.1016/j.postharvbio.2006.03.008
http://dx.doi.org/10.1007/s00425-010-1184-z
http://dx.doi.org/10.1016/j.jfoodeng.2012.08.024
http://dx.doi.org/10.21273/HORTSCI.37.2.378
http://dx.doi.org/10.1002/(SICI)1097-0010(20000101)80:1<63::AID-JSFA479>3.0.CO;2-8
http://dx.doi.org/10.3390/foods12010006
http://dx.doi.org/10.1111/j.1365-2621.2000.tb10270.x
http://dx.doi.org/10.1016/j.compag.2006.07.002
http://dx.doi.org/10.1007/s11947-014-1390-y
http://dx.doi.org/10.3390/s19020419
http://www.ncbi.nlm.nih.gov/pubmed/30669613

Chemosensors 2025, 13, 255 25 of 25

34.

35.
36.

37.

38.

39.

40.

Qiu, S;; Hou, P,; Huang, J.; Han, W.; Kang, Z. The Monitoring of Black-Odor River by Electronic Nose with Chemometrics for pH,
COD, TN, and TP. Chemosensors 2021, 9, 168. [CrossRef]

Martinez, A.; Kak, A. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228-233. [CrossRef]

Huang, X.Y,; Pan, S.H.; Sun, Z.Y.; Ye, W.T.; Aheto, ] H. Evaluating quality of tomato during storage using fusion information of
computer vision and electronic nose. J. Food Process Eng. 2018, 41, €12832. [CrossRef]

Hong, X.; Wang, J.; Qi, G. E-nose combined with chemometrics to trace tomato-juice quality. J. Food Eng. 2015, 149, 38—43.
[CrossRef]

Castagna, A.; Aboudia, A.; Guendouz, A.; Scieuzo, C.; Falabella, P.; Matthes, J.; Schmid, M.; Drissner, D.; Allais, F.; Chadni, M.;
et al. Transforming Agricultural Waste from Mediterranean Fruits into Renewable Materials and Products with a Circular and
Digital Approach. Materials 2025, 18, 1464. [CrossRef]

Henrichs, E.; Noack, T.; Pinzon Piedrahita, A.M.; Salem, M.A.; Stolz, J.; Krupitzer, C. Can a Byte Improve Our Bite? An Analysis
of Digital Twins in the Food Industry. Sensors 2022, 22, 115. [CrossRef]

Krupitzer, C.; Noack, T.; Borsum, C. Digital Food Twins Combining Data Science and Food Science: System Model, Applications,
and Challenges. Processes 2022, 10, 1781. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.3390/chemosensors9070168
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.1111/jfpe.12832
http://dx.doi.org/10.1016/j.jfoodeng.2014.10.003
http://dx.doi.org/10.3390/ma18071464
http://dx.doi.org/10.3390/s22010115
http://dx.doi.org/10.3390/pr10091781

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.



	Introduction
	Materials and Methods
	Sample Selection and Storage Scenarios
	Storage Condition Monitoring
	Weight Loss
	Color Analysis
	E-Nose
	The E-Nose System
	Measurement Procedure

	Machine Learning Pipeline
	E-Nose Data Processing
	Feature Pre-Processing
	Machine Learning Models


	Results
	Storage Condition Monitoring
	Weight Loss
	Color Analysis
	E-Nose
	Machine Learning Pipeline
	Dimensionality Reduction
	Classification Models
	Regression Models


	Discussion
	E-Nose
	Influence of Temperature and Mechanical Damage on Shelf Life
	Weight Loss
	Color
	Aroma

	Machine Learning Pipeline
	Dimensionality Reduction
	Classification Model Performance
	Regression Model Performance

	Threats to Validity

	Conclusions
	References

